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Abstract

This document explains in more detail parts of the method illustrated in the as-
sociated paper “PROTAMP-RRT: A Probabilistic Integrated Task and Motion
Planner based on RRT”. In particular, we provide a discussion of probabilistic
completeness of the proposed PROTAMP-RRT algorithm (Section A), a discus-
sion and evaluation of the hyperparameters (Section B) and an analysis of the
algorithm scalability (Section C).

A Probabilistic completeness

In this section, we outline a proof that PROTAMP-RRT (Algorithm 1) is prob-
abilistically complete, i.e., that as the planning time increases, the probability
that a solution is found, if one exists, approaches one. This proof applies only
for a finite symbolic space, i.e. when sampling of new significant object poses
is disabled and a finite set of significant object poses is pre-defined. Proving
probabilistic completeness of the whole algorithm is likely more complex, as the
symbolic space can grow without limit. We also suspect that PROTAMP-RRT
is not probabilistically complete, but that it may be made probabilistically com-
plete with minor modifications. For example, it may be made probabilistically
complete by randomly selecting a random symbolic action from time to time.

The proof of probabilistic completeness proceeds as follows. First, we prove
that if the currently selected plan αbest is infeasible, the task planner will even-
tually be called to find a new symbolic plan, with probability approaching one
(Theorem 1). Then, we prove that if there exists at least a feasible symbolic
plan, then a feasible plan will be selected as αbest a number of times approach-
ing infinity as the planning time increases (Theorem 2). Finally, we will prove
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Algorithm 1 PROTAMP-RRT planning algorithm

Input: E , O, A, R, L, G, q0 , s0
Output: αbest , T
1: P ← ∅, T ← {(s0 , q0 )}, Pbest = 1
2: while true do
3: . Task planning
4: if αbest = ∅ or P (αbest) < Pbest Pmult then
5: αbest ← TaskPlanner(O,A,L,G, s0 ,P)
6: r ← ReachableActions(T , αbest)

7: while Pobj (αbest) ≤ P |αbest |−(r−1)
low do

8: L ← L ∪ {SampleNewObjectPose(R)}
9: αbest ← TaskPlanner(O,A,L,G, s0 ,P)

10: r ← ReachableActions(T , αbest)

11: Pbest ← P (αbest)

12: qgoal ← qend (ar) . Motion planning
13: qnew ← SampleState(T , qgoal)
14: Cnew ← CheckCollisions(qnew , sr−1)
15: P←UpdateProb(P, E , T , ar, qnew , qgoal , Cnew , sr−1)
16: if Cnew = ∅ then
17: T ← Extend(T , (sr−1, qnew ))
18: if qnew = qgoal and r = |αbest | then
19: return αbest , T
20: if qnew = qgoal then
21: SetSolved(P, ar, sr−1)
22: r ← r + 1

that, if the current plan αbest is feasible, then there is a nonzero probability
that the motion planner finds a solution before the generation of a new plan is
triggered (Theorem 3). Therefore, as the motion planner has potentially any
number of attempts to find the solution, for planning time approaching infinity
the probability that the solution is found approaches one.

Theorem 1. If the currently selected plan αbest is infeasible, the task planner
will eventually be called to find a new symbolic plan, with probability approaching
one.

Proof. If αbest is infeasible, then there exists an action ar whose sub-goal qend (ar)
is unreachable in symbolic state sr−1. As there must be an obstacle prevent-
ing the action from reaching the goal, there is always a nonzero probability of
sampling a robot configuration which is in collision. The collision may be ei-
ther with the environment (hence it affects the environmental probability) or
a movable object (hence it affects the object conditional probability). As the
two kinds of probabilities are updated in the same way, in the following we sim-
ply use the term “probability” for both. Whenever a colliding configuration is
sampled, probability of that action in the probabilistic model is reduced accord-
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ing to Section III-B. Conversely, probability is increased only when the sampled
configuration is not in collision and it is closer to the sub-goal than all other con-
figurations in T with the same symbolic state sr−1. The probability of finding
a new non-colliding configuration closer to the sub-goal decreases exponentially
as more configurations are added to T , as the new configuration must be closer
than all other already-sampled configurations. Therefore, as the number of
sampled configurations increases, the expected number of non-colliding configu-
rations sampled closer to the goal approaches a finite value, while the number of
colliding configurations grows unlimitedly. Hence, the estimated probability of
action ar in state sr−1 in the probabilistic model tends to zero. Therefore, also
P (αbest)→ 0, and in particular it will eventually be lower than Pbest Pmult , so
the task planner will be triggered to find a new plan (line 4 of Algorithm 1).

Theorem 2. If there exists at least a feasible symbolic plan, then a feasible plan
will be selected as αbest a number of times approaching infinity as the planning
time increases.

Proof. If L contains a finite number of significant object poses, the symbolic
state is finite. Hence, the number of symbolic plans is also finite, as each sym-
bolic plan traverses each symbolic state at most once. Otherwise, if the same
symbolic state was traversed at two points in the plan, a shorter plan with higher
probability would be found by removing the actions in-between. According to
Theorem 1, if the current symbolic plan is infeasible the task planner is even-
tually called to obtain a new symbolic plan. We now prove that eventually the
returned plan is one of the feasible plans. Let’s assume by contradiction that,
starting at some point in time, all plans returned by the task planner are from
a subset which contains only infeasible plans. By definition, each of these plans
has at least one infeasible action ar, whose sub-goal cannot be reached by the
motion planner in symbolic state sr−1. As RRT is probabilistically complete,
and the number of plans is finite, eventually it is able to reach the sub-goal of
all actions of all plans in the subset, up to the first infeasible action. When this
happens, for Theorem 1 the motion planner eventually calls the task planner
with the probability of the infeasible action in symbolic state sr−1 reduced at
least by a factor 1/Pmult . This operation also reduces the probability of the
same action in symbolic states different from sr−1 (which may belong to feasi-
ble plans), but by a lesser extent, as the same action in other symbolic states
does not share all the object conditional probabilities. Hence, eventually the
probability of all symbolic plans in the subset of infeasible plans will be below
one of the feasible plans, and the task planner returns a feasible plan which is
not in the subset. We reached a contradiction, hence we can conclude that a
feasible symbolic plan will be eventually returned starting from any point in
time. Therefore, as planning time increases a feasible symbolic plan is selected
a number of times approaching infinity.

Theorem 3. Given a feasible symbolic plan αbest , the motion planner has a
nonzero probability of finding a corresponding motion trajectory before the task
planner is triggered.
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Proof. As long as robot configurations which are in collision are not sampled,
the probability is never reduced in the probabilistic model, and therefore the
task planner cannot be triggered. Hence, the RRT has a nonzero probability of
finding the trajectory which is at least the probability of sampling all the robot
configuration of the trajectory without sampling a colliding state.

B Hyperparameter evaluation

In this section, we discuss the hyperparameters in PROTAMP-RRT and show
their effect on the TAMP method performance. In particular, there are ten
configuration parameters for our approach: Ne

0 , De
0, N c

0 , Dc
0, Nmin, Dmin, PH ,

Pmult , Plow , Pgoal . We analyze these parameters separately as two groups:
parameters Ne

0 , De
0, N c

0 , Dc
0, Nmin, Dmin affect the probabilistic model, while

PH , Pmult , Plow , Pgoal affect the behavior of the task and the motion planner.
In the first group , Ne

0 and De
0 are the numerator and denominator of the

initial environmental probability P e0 = Ne
0/D

e
0, which represents the a priori en-

vironmental probability for a new action. Similarly, N c
0 and Dc

0 are the numer-
ator and denominator of the initial object conditional probability P c0 = N c

0/D
c
0,

which represents the a priori conditional probability Pc (a|c) when a new object-
pose pair c affecting action a is discovered. Parameters Nmin and Dmin are the
numerator and denominator used to restore the probability to a higher value
Pmin = Nmin/Dmin when the motion planner samples a new valid robot con-
figuration towards an action sub-goal. This probability should be high if the
geometric space has many dead ends (local minima) in which the motion plan-
ner can get stuck, so that the probability is reset to an higher value when the
planner manages to escape one of these local minima. Changing the numerators
and the denominators of the first group of parameters, while keeping P e0 , P c0 and
Pmin constant, changes the impact of a single probability increase or reduction
on the probability value. When numerators and denominators are low, incre-
ments and decrements result in a larger impact, hence the probabilities change
faster and, therefore, the task planner will be called more frequently if sampling
of valid configurations fails. Hence, lower values are suited for simpler scene
geometry, where just a few failures likely mean that the action is infeasible and
that a different symbolic plan should be selected.

The parameters in the second group (PH , Pmult, Plow and Pgoal) affect the
behavior of the task and motion planner. The first parameter PH is used to
compute the A? heuristic:

H(s|α′|) = (PH)U(s|α′|) (8)

where U(s|α′|) is the number of unsatisfied conditions in the current symbolic
state with respect to the task goal. Parameter Pmult is used to trigger replanning
of the task plan. That is, when the probability of the current plan is reduced
by less than Pmult multiplied by its original value, the task planner is called to
potentially find a better symbolic plan. A lower value of Pmult means that the
RRT is allowed more sampling failures before switching to a different task plan,
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Figure 11: Success rate (a) and average planning time (b) for the first group
of parameters, in the Transfer 2 task. Values are displayed inside each cell.

and it is therefore suited for more complex scene geometry where the RRT needs
more planning time. Parameter Plow is the threshold to sample new significant
object poses: the higher Plow , the more frequently new poses are sampled. The
last parameter, Pgoal , is the probability that the RRT motion planner attempts
an extension towards the action sub-goal, instead of sampling randomly.

We analyzed the effect of the parameters on the planning algorithm by ex-
ecuting a grid search for each group. During the evaluation of one group, the
parameters of the other group were fixed as reported at the end of Section IV-A
in the main article. Planning was executed 25 times for each parameter com-
bination, on two tasks: Transfer 2 and Culprit. The number of successes after
600 seconds and the average planning time were recorded.

For the first group of parameters (Ne
0 , De

0, N c
0 , Dc

0, Nmin , Dmin), all denom-
inators (De

0, Dc
0, Dmin) were set equal to the same value D. Moreover, the nu-

merator of the initial object conditional probability N c
0 was set to N c

0 = Dc
0−1,

so that P c0 is only slightly less than 1. Indeed, when a new object conditional
probability is initialized to P c0 , the collision with that object-pose pair has oc-
curred only once, and therefore the probability of the plan should not change
significantly. These choices leave three degrees of freedom for the grid search:
D, P e0 and Pmin . The following values were tested: D ∈ {10, 20, 30, 50, 100},
P e0 ∈ {0.6, 0.8, 0.9} and Pmin ∈ {0.4, 0.5, 0.6}. Results are reported in Fig. 11
and Fig. 12. Generally, PROTAMP-RRT is rather robust against parameter
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Figure 12: Success rate and average planning time for the first group of param-
eters, in the Culprit task. Values are displayed inside each cell.

changes, as most parameter combinations resulted in only a few failures. How-
ever, it can be observed that with P e0 = 0.6 PROTAMP-RRT is unable to find
a solution in the Culprit task, as probability of new actions is too low and they
are never selected. Also, average planning time is lower for smaller D in both
tasks, which means that in these particular tasks it is more efficient to change
symbolic plan after only a few sampling failures.

For the second group of parameters (Pgoal , PH , Pmult and Plow ), parameter
Pgoal was fixed to 0.3 which is a common value for this parameter in RRT-based
approaches (e.g., also used in TM-RRT by Finzi et al.). To provide a consistent
heuristic for A? (equation 8), parameter PH should be set greater or equal than
the joint probability of the actions needed to change an unsatisfied condition to
a satisfied one. To select an approximate value for PH , we consider that, as in
our tasks conditions are represented by objects located in regions, the planner
needs at least two actions (a pick and a place) to satisfy a goal condition. Hence,
we choose PH as the squared a priori environmental probability P e0 = Ne

0/D
e
0

for an action, increased by 0.5%:

PH = 1.005 · (P e0 )
2

(9)

A grid search was carried out for the two remaining parameters, Pmult and Plow ,
with the possible values: Pmult ∈ {0.1, 0.2, 0.3} and Pmin ∈ {0.6, 0.7, 0.8}. Re-
sults are shown in Fig. 13. The number of failures is very low for all tested
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Figure 13: Success rate (left) and average planning time in seconds (right) of
the grid search for Pmult and Pmin, in the Transfer 2 and the Culprit tasks.
Values are displayed inside each cell.

combinations of the parameters and in both tasks. Generally, there is a notice-
able planning time increase for low values of Plow , which triggers the sampling
of new significant object poses less frequently. Similarly, high values of Pmult

resulted in lower planning times. These observations confirm that in these
particular tasks it is more efficient to change symbolic plan and sample new
significant object poses more frequently.

C Scalability

In this section we report experimental results about the scalability of our ap-
proach. We planned the Transfer 2 task with a progressively increasing number
of movable objects, up to 8 objects. For each number of objects, planning was
repeated 25 times. In order to have enough space to relocate the objects, we
increased the area of the Place table region proportionally to the number of the
available movable objects. In particular, for n objects, the table side length was
computed as:

ltable =
l0√
n0

√
n (10)
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Figure 14: Scalability test in the Transfer 2 task.
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Figure 15: Average planning time of the first 10 task planning calls for 5, 6 and
7 objects.

where l0 = 0.4 and n0 = 3 are, respectively, the initial table side length and the
number of boxes in the Transfer 2 task.

The results of the scalability test are shown in Figure 14, where we report
the success rate as a function of planning time for each number of objects. The
success rate decreases as the number of movable objects increases, reaching 0
for 8 objects. The main cause is that, for many objects, the A? task planner has
high planning time and memory usage, eventually filling the 32 GB of available
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RAM. The issue is most evident in Figure 15, in which the average planning
times of the first 10 task planner calls are shown. At the beginning of the
execution, when most actions have the same probability as only a few of them
have been attempted by the motion planner, the task planner operates as a
simple breadth-first search, and it is forced to enumerate all possible task plans
with minimum length. Therefore, the first calls of the task planner require long
planning times. We hypothesize that better performance could be obtained
with a different task planner which combines both breadth-first and depth-first
search.
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